Friday, December 25, 2009

Chemical Engineering History


Chemical engineering is the branch of engineering that deals with the application of physical science (e.g. chemistry and physics), and life sciences (e.g. biology, microbiology and biochemistry) with mathematics, to the process of converting raw materials or chemicals into more useful or valuable forms. In addition to producing useful materials, modern chemical engineering is also concerned with pioneering valuable new materials and techniques - such as nanotechnology, fuel cells and biomedical engineering. Chemical engineering largely involves the design, improvement and maintenance of processes involving chemical or biological transformations for large-scale manufacture. Chemical engineers ensure the processes are operated safely, sustainably and economically. Chemical engineers in this branch are usually employed under the title of process engineer. A related term with a wider definition is chemical technology. A person employed in this field is called a chemical engineer.

Chemical Engineering Applications


Chemical engineering is applied in the manufacture of a wide variety of products. The chemical industry proper manufactures inorganic and organic industrial chemicals, ceramics, fuels and petrochemicals, agrochemicals (fertilizers, insecticides, herbicides), plastics and elastomers, oleochemicals, explosives, detergents and detergent products (soap, shampoo, cleaning fluids), fragrances and flavors, additives, dietary supplements and pharmaceuticals. Closely allied or overlapping disciplines include wood processing, food processing, environmental technology, and the engineering of petroleum, glass, paints and other coatings, inks, sealants and adhesives.

Chemical Engineering Timeline


In 1824, French physicist Sadi Carnot, in his “On the Motive Power of Fire”, was the first to study the thermodynamics of combustion reactions in steam engines. In the 1850s, German physicist Rudolf Clausius began to apply the principles developed by Carnot to chemical systems at the atomic to molecular scale. During the years 1873 to 1876 at Yale University, American mathematical physicist Josiah Willard Gibbs, the first to be awarded a Ph.D. in engineering in the U.S., in a series of three papers, developed a mathematical-based, graphical methodology, for the study of chemical systems using the thermodynamics of Clausius. In 1882, German physicist Hermann von Helmholtz, published a founding thermodynamics paper, similar to Gibbs, but with more of an electro-chemical basis, in which he showed that measure of chemical affinity, i.e. the “force” of chemical reactions, is determined by the measure of the free energy of the reaction process. Following these early of chemical engineering began to develop. The following timeline shows some of the key steps in the development of the science of chemical engineering:

1805 – John Dalton published Atomic Weights, allowing chemical equations to be balanced and the basis for chemical engineering mass balances.
1882 – a course in “Chemical Technology” is offered at University College London
1883 – Osborne Reynolds defines the dimensionless group for fluid flow, leading to practical scale-up and understanding of flow, heat and mass transfer
1885 – Henry Edward Armstrong offers a course in “chemical engineering” at Central College (later Imperial College), London.
1888 – There is a Department of Chemical Engineering at Glasgow and West of Scotland Technical College offering day and evening classes.
1888 – Lewis M. Norton starts a new curriculum at Massachusetts Institute of Technology (MIT): Course X, Chemical Engineering
1889 – Rose Polytechnic Institute awards the first bachelor’s of science in chemical engineering in the US.
1891 – MIT awards a bachelor’s of science in chemical engineering to William Page Bryant and six other candidates.
1892 – A bachelor’s program in chemical engineering is established at the University of Pennsylvania.
1901 – George E. Davis produces the Handbook of Chemical Engineering
1905 – the University of Wisconsin awards the first Ph.D. in chemical engineering to Oliver Patterson Watts.
1908 – the American Institute of Chemical Engineers (AIChE) is founded.
1922 – the UK Institution of Chemical Engineers (IChemE) is founded.
1942 – Hilda Derrick, first female student member of the IChemE

Chemical Engineering Overview


Chemical engineers design processes to ensure the most economical operation. This means that the entire production chain must be planned and controlled for costs. A chemical engineer can both simplify and complicate "showcase" reactions for an economic advantage. Using a higher pressure or temperature makes several reactions easier; ammonia, for example, is simply produced from its component elements in a high-pressure reactor. On the other hand, reactions with a low yield can be recycled continuously, which would be complex, arduous work if done by hand in the laboratory. It is not unusual to build 6-step, or even 12-step evaporators to reuse the vaporization energy for an economic advantage. In contrast, laboratory chemists evaporate samples in a single step.
The individual processes used by chemical engineers (eg. distillation or filtration) are called unit operations and consist of chemical reactions, mass-, heat- and momentum- transfer operations. Unit operations are grouped together in various configurations for the purpose of chemical synthesis and/or chemical separation. Some processes are a combination of intertwined transport and separation unit operations, (e.g. reactive distillation).
Three primary physical laws underlying chemical engineering design are conservation of mass, conservation of momentum and conservation of energy. The movement of mass and energy around a chemical process are evaluated using mass balances and energy balances, laws that apply to discrete parts of equipment, unit operations, or an entire plant. In doing so, chemical engineers must also use principles of thermodynamics, reaction kinetics and transport phenomena. The task of performing these balances is now aided by process simulators, which are complex software models (see List of Chemical Process Simulators) that can solve mass and energy balances and usually have built-in modules to simulate a variety of common unit operations.

Chemical Reaction


A chemical reaction is a process that leads to the transformation of one set of chemical substances to another. They are studied by chemists under a field of science called chemistry. Chemical reactions can be either spontaneous, requiring no input of energy, or non-spontaneous, often coming about only after the input of some type of energy, viz. heat, light or electricity. Classically, chemical reactions encompass changes that strictly involve the motion of electrons in the forming and breaking of chemical bonds, although the general concept of a chemical reaction, in particular the notion of a chemical equation, is applicable to transformations of elementary particles, as well as nuclear reactions.
The substance or substances initially involved in a chemical reaction are called reactants. Chemical reactions are usually characterized by a chemical change, and they yield one or more products, which usually have properties different from the reactants.
Different chemical reactions are used in combination in chemical synthesis in order to get a desired product. In biochemistry, series of chemical reactions catalyzed by enzymes form metabolic pathways, by which syntheses and decompositions ordinarily impossible in conditions within a cell are performed.

Reaction Types


The large diversity of chemical reactions and approaches to their study results in the existence of several concurring, often overlapping, ways of classifying them. Below are examples of widely used terms for describing common kinds of reactions.

when a chemical reaction occurs, the reactants and the product must get an equal amount of energy.

Isomerisation, in which a chemical compound undergoes a structural rearrangement without any change in its

Chemical Kinetics

The rate of a chemical reaction is a measure of how the concentration or pressure of the involved substances changes with time. Analysis of reaction rates is important for several applications, such as in chemical engineering or in chemical equilibrium study. Rates of reaction depends basically on:

  • Reactant concentrations, which usually make the reaction happen at a faster rate if raised through increased collisions per unit time,
  • Surface area available for contact between the reactants, in particular solid ones in heterogeneous systems. Larger surface area leads to higher reaction rates.
  • Pressure, by increasing the pressure, you decrease the volume between molecules. This will increase the frequency of collisions of molecules.
  • Activation energy, which is defined as the amount of energy required to make the reaction start and carry on spontaneously. Higher activation energy implies that the reactants need more energy to start than a reaction with a lower activation energy.
  • Temperature, which hastens reactions if raised, since higher temperature increases the energy of the molecules, creating more collisions per unit time,
  • The presence or absence of a catalyst. Catalysts are substances which change the pathway (mechanism) of a reaction which in turn increases the speed of a reaction by lowering the activation energy needed for the reaction to take place.
  • A catalyst is not destroyed or changed during a reaction, so it can be used again.
  • For some reactions, the presence of electromagnetic radiation, most notably ultraviolet, is needed to promote the breaking of bonds to start the reaction. This is particularly true for reactions involving radicals.

Reaction rates are related to the concentrations of substances involved in reactions, as quantified by the rate law of each reaction. Note that some reactions have rates that are independent of reactant concentrations. These are called zero order reactions.

Reactions and Energy
Chemical energy is part of all chemical reactions. Energy is needed to break chemical bonds in the starting substances. As new bonds form in the final substances, energy is released. By comparing the chemical energy of the original substances with the chemical energy of the final substances, you can decide if energy is released or absorbed in the overall reaction.

Exothermic Reactions
A chemical reaction in which energy is released is called an exothermic reaction. Exo means "go out" or "exit." Thermic means "heat" or "energy." Exothermic reactions can give off energy in several forms. If heat is released in an exothermic reaction, the nearby matter will become warmer. The nearby matter absorbs the heat released by the reaction. The reaction between gasoline and oxygen in a car's engine is an exothermic reaction.

Modern Chemical Engineering

The modern discipline of chemical engineering encompasses much more than just process engineering. Chemical engineers are now engaged in the development and production of a diverse range of products, as well as in commodity and specialty chemicals. These products include high performance materials needed for aerospace, automotive, biomedical, electronic, environmental, space and military applications. Examples include ultra-strong fibers, fabrics, dye-sensitized solar cells, adhesives and composites for vehicles, bio-compatible materials for implants and prosthetics, gels for medical applications, pharmaceuticals, and films with special dielectric, optical or spectroscopic properties for opto-electronic devices. Additionally, chemical engineering is often intertwined with biology and biomedical engineering. Many chemical engineers work on biological projects such as understanding biopolymers (proteins) and mapping the human genome. The line between chemists and chemical engineers is growing ever more thin as more and more chemical engineers begin to start their own innovation using their knowledge of chemistry, physics and mathematics to create, implement and mass produce their ideas.